Negative 2 and two-thirds, negative 5 and one-third, negative 10 and two-thirds, negative 21 and one-third, negative 42 and two-thirds, ellipsis Which formula can be used to describe the sequence?

Respuesta :

Answer:

[tex]f(n) = -\frac{8}{3}n[/tex]

Step-by-step explanation:

Given

[tex]-2\frac{2}{3}, -5\frac{1}{3}, -10\frac{2}{3}, -21\frac{1}{3}, -42\frac{2}{3}[/tex]

Required

The explicit formula

The above sequence is an arithmetic sequence and it is bounded by:

[tex]f(n) = a + (n - 1)d[/tex]

Where

[tex]a = -2\frac{2}{3}[/tex] -- the first term

[tex]d = f(2) -f(1)[/tex]

So, we have:

[tex]d = -5\frac{1}{3} - -2\frac{2}{3}[/tex]

[tex]d = -5\frac{1}{3} +2\frac{2}{3}[/tex]

Express as improper fraction

[tex]d = -\frac{16}{3} +\frac{8}{3}[/tex]

Take LCM

[tex]d = \frac{-16+8}{3}[/tex]

[tex]d = -\frac{8}{3}[/tex]

So, we have:

[tex]f(n) = a + (n - 1)d[/tex]

[tex]f(n) = -2\frac{2}{3} + (n - 1) * -\frac{8}{3}[/tex]

Express all fractions as improper

[tex]f(n) = -\frac{8}{3} + (n - 1) * -\frac{8}{3}[/tex]

Open brackets

[tex]f(n) = -\frac{8}{3} -\frac{8}{3}n +\frac{8}{3}[/tex]

Collect like terms

[tex]f(n) = -\frac{8}{3}n +\frac{8}{3}-\frac{8}{3}[/tex]

[tex]f(n) = -\frac{8}{3}n[/tex]