Respuesta :
Answer:
[tex]\displaystyle x=\frac{-1}{2}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
- Standard Form: ax² + bx + c = 0
- Quadratic Formula: [tex]\displaystyle x=\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
x² + x + 1/4 = 0
↓ Compare to Standard Form
a = 1, b = 1, c = 1/4
Step 2: Solve for x
- Substitute in variables [Quadratic Formula]: [tex]\displaystyle x=\frac{-1 \pm \sqrt{1^2 - 4(1)(\frac{1}{4})}}{2(1)}[/tex]
- [√Radical] Evaluate exponents: [tex]\displaystyle x=\frac{-1 \pm \sqrt{1 - 4(1)(\frac{1}{4})}}{2(1)}[/tex]
- [√Radical] Multiply: [tex]\displaystyle x=\frac{-1 \pm \sqrt{1 - 1}}{2(1)}[/tex]
- [√Radical] Subtract: [tex]\displaystyle x=\frac{-1 \pm \sqrt{0}}{2(1)}[/tex]
- [√Radical] Evaluate: [tex]\displaystyle x=\frac{-1 \pm 0}{2(1)}[/tex]
- Simplify: [tex]\displaystyle x=\frac{-1}{2(1)}[/tex]
- Multiply: [tex]\displaystyle x=\frac{-1}{2}[/tex]