Respuesta :
Answer:
(a) 20226 units
(b) Marginal productivities
[tex]P_x =2500x^{-\frac{4}{5}} & y^\frac{1}{5}[/tex]
[tex]P_y =2500 x^\frac{1}{5} y^{-\frac{4}{5}}[/tex]
(c) Evaluation of the marginal productivities
[tex]P_x =803[/tex]
[tex]P_y = 15[/tex]
Step-by-step explanation:
Given
[tex]P(x,y) = 2500x^\frac{1}{5}y^\frac{1}{5}[/tex]
Solving (a): P(x,y) when x = 26 and y = 1333
[tex]P(x,y) = 2500x^\frac{1}{5}y^\frac{1}{5}[/tex] becomes
[tex]P(26,1333) = 2500*26^\frac{1}{5}*1333^\frac{1}{5}[/tex]
[tex]P(26,1333) = 20226[/tex] --- approximated
Solving (b): The marginal productivities
To do this, we simply calculate Px and Py
Differentiate x to give Px, so we have:
[tex]P(x,y) = 2500x^\frac{1}{5}y^\frac{1}{5}[/tex] becomes
[tex]P_x =2500 * x^{\frac{1}{5}-1} & y^\frac{1}{5}[/tex]
[tex]P_x =2500 * x^{-\frac{4}{5}} & y^\frac{1}{5}[/tex]
[tex]P_x =2500x^{-\frac{4}{5}} & y^\frac{1}{5}[/tex]
Differentiate y to give Py, so we have:
[tex]P(x,y) = 2500x^\frac{1}{5}y^\frac{1}{5}[/tex] becomes
[tex]P_y =2500 * x^\frac{1}{5} & y^{\frac{1}{5}-1}[/tex]
[tex]P_y =2500 x^\frac{1}{5} y^{-\frac{4}{5}}[/tex]
Solving (c): Px and Py when x = 25 and y = 1333
[tex]P_x =2500x^{-\frac{4}{5}} & y^\frac{1}{5}[/tex] becomes
[tex]P_x =2500 * 25^{-\frac{4}{5}} * 1333^\frac{1}{5}[/tex]
[tex]P_x =803[/tex] --- approximated
[tex]P_y =2500 x^\frac{1}{5} y^{-\frac{4}{5}}[/tex] becomes
[tex]P_y =2500 * 25^\frac{1}{5} * 1333^\frac{-4}{5}[/tex]
[tex]P_y = 15[/tex]