Answer:
D
Explanation:
From the information given:
Association rate [tex]K_a[/tex] = [tex]8.9 \times 10^3 M^{-1}s^{-1}[/tex]
dissociation constant [tex]K_D[/tex] = 10 nM
dissociation rate [tex]K_d[/tex] = ???
Using the following relation from equilibrium dissociation constant to determine the dissociation rate, we have:
[tex]K_D =\dfrac{ K_d}{K_a}[/tex]
[tex]K_d = K_D \times K_a[/tex]
[tex]K_d =(10*10^{-9} \ M) \times (8.9*10^3 \ M^{-1}{s^{-1})[/tex]
[tex]\mathbf{K_d =8.9*10^{-5} \ {s^{-1}}}[/tex]