Answer:
Amount left is 941.95 g.
Step-by-step explanation:
initial amount = 1000 g
time = 10 years
amount left = 980 grams
Now
[tex]980 = 1000 e^{-\lambda t}\\\\e^{\lambda\times 10}= 1.02\\\\10 \lambda = ln 1.02\\\\\lambda = 1.98\times10^{-3} per year[/tex]
time t = 20 years
Let the amount is N.
[tex]980 = 1000 e^{-\lambda t}\\\\e^{\lambda\times 10}= 1.02\\\\10 \lambda = ln 1.02\\\\\lambda = 1.98\times10^{-3} per year\\N = 980 e^{- 1.98\times 10^{-3}\times 20}\\\\ln N = ln 980 - 0.0396\\\\ln N = 6.88 - 0.0396 = 6.86\\\\N = 941.95 g[/tex]