The x- intercepts of a parabola are (0,-6) and (0,4). The parabola crosses the y- axis at -120. Lucas said that an equation for the parabola is y=5x^2+10x-120 and that the coordinates of the vertex are (-1, -125). Do you agree or disagree? List why?

Respuesta :

Given:

The x- intercepts of a parabola are (0,-6) and (0,4).

The parabola crosses the y- axis at -120.

Lucas said that an equation for the parabola is [tex]y=5x^2+10x-120[/tex] and that the coordinates of the vertex are (-1, -125).

To find:

Whether Lucas is correct or not.

Solution:

The x- intercepts of a parabola are (0,-6) and (0,4). It means (x+6) and (x-4) are the factors of the equation of the parabola.

[tex]y=a(x+6)(x-4)[/tex]             ...(i)

The parabola crosses the y- axis at -120. It means the equation of the parabola must be true for (0,-120).

[tex]-120=a(0+6)(0-4)[/tex]

[tex]-120=a(6)(-4)[/tex]

[tex]-120=-24a[/tex]

Divide both sides by -24.

[tex]\dfrac{-120}{-24}=a[/tex]

[tex]5=a[/tex]

Substituting [tex]a=5[/tex] in (i), we get

[tex]y=5(x+6)(x-4)[/tex]

[tex]y=5(x^2+6x-4x-24)[/tex]

[tex]y=5(x^2+2x-24)[/tex]

[tex]y=5x^2+10x-120[/tex]

So, the equation of the parabola is [tex]y=5x^2+10x-120[/tex].

The vertex of a parabola [tex]f(x)=ax^2+bx+c[/tex] is:

[tex]Vertex=\left(-\dfrac{b}{2a},f(-\dfrac{b}{2a})\right)[/tex]

In the equation of the parabola, [tex]a=5,b=10,c=-120[/tex].

[tex]-\dfrac{b}{2a}=-\dfrac{10}{2(5)}[/tex]

[tex]-\dfrac{b}{2a}=-\dfrac{10}{10}[/tex]

[tex]-\dfrac{b}{2a}=-1[/tex]

Putting [tex]x=-1[/tex] in the equation of the parabola, we get

[tex]y=5(-1)^2+10(-1)-120[/tex]

[tex]y=5-10-120[/tex]

[tex]y=-125[/tex]

So, the vertex of the parabola is at point (-1,-125).

Therefore, Lucas is correct.