Respuesta :
Answer:
Following are the solution to the given points:
Explanation:
Given:
[tex](D) = 10,160\ tires / year\\\\(H) = \$14 / tire\\\\(S) = \$76\\\\work\ days\ number = 287 \ \frac{days}{year}[/tex]
For point a:
[tex]EOQ = \sqrt{(\frac{2DS}{H})}[/tex]
[tex]=\sqrt{(\frac{2\times 10,160\times 14 }{14})}\\\\=\sqrt{({2\times 10,160})}\\\\=\sqrt{20320}\\\\=142.548[/tex]
For point b:
Calculating the order of number of per year [tex]= \frac{D}{EOQ}[/tex]
[tex]=\frac{10,160}{142.548}\\\\=71.27\approx 71[/tex]
therefore, the reorded store 71 times per year
For point c:
Calculating the order cycle length [tex]= (\frac{EOQ}{D}) \times \text{work days number in a year}[/tex]
[tex]= (\frac{142.548}{10,160}) \times287\\\\= 0.0140\times287\\\\=4.018[/tex]
For point d:
[tex]\text{Total annual cost = carrying cost + ordering cost}[/tex]
Carrying cost:
[tex]= (\frac{EOQ}{2}) \times H \\\\= (\frac{142.548}{2}) \times 14 \\\\= 71.274 \times 14 \\\\= \$997.836 \approx 998\\\\\[/tex]
Ordering cost:
[tex]= (\frac{D}{EOQ}) \times S \\\\ = (\frac{10160}{142.548}) \times 76 \\\\ = 71.274\times 76\\\\ = \$5416.824\\\\[/tex]
[tex]\therefore\\\\\text{Total annual cost = Carrying cost + Holding cost}[/tex]
[tex]=998+5416.824\\\\=6414.824[/tex]