Respuesta :
Answer:
a) [tex]P(Adult)=\frac{73}{249}=0.2932=29.32%[/tex]
b) [tex]P(Chocolate)=\frac{91}{249}=0.3655=36.55%[/tex]
c) [tex]P(AdultorVanilla)=\frac{31}{83}=0.3734=37.34%[/tex]
d) [tex]P(ChildandVanilla)=\frac{10}{249}=0.0402=4.02%[/tex]
e) [tex]P(Strawberry/Child)=\frac{22}{47}=0.4681=46.81%[/tex]
f) [tex]P(Child/strawberry)=\frac{44}{95}=0.4632=46.32%[/tex]
Step-by-step explanation:
a)
In order to solve part a of the problem, we need to find the number of adults in the survey and divide them into the number of people in the survey by using the following formula>
[tex]P=\frac{desired}{possible}[/tex]
In this case we have a total of 17+43+13 adults which gives us 73 adults and a total of 249 people surveyed so we get:
[tex]P(Adults)=\frac{73}{249}=0.2932=29.32%[/tex]
b)
The same principle works for part b
there are: 40+34+17=91 people who likes chocolate ice cream the best so the probability is:
[tex]P(Chocolate)=\frac{91}{249}=0.3655=36.55%[/tex]
c)
when it comes to the or statement, we can use the following formula:
P(A or B) = P(A) + P(B) - P( A and B)
In this case:
[tex]P(Adult)=\frac{73}{249}[/tex]
[tex]P(Vanilla)=\frac{10+10+43}{249}=\frac{63}{249}[/tex]
[tex]P(AdultandVanilla)=\frac{43}{249}[/tex]
so:
[tex]P(AdultorVanilla)=\frac{73}{249}+\frac{63}{249}-\frac{43}{249}[/tex]
[tex]P(AdultorVanilla)=\frac{31}{83}=0.3734=37.34%[/tex]
d)
Is a child and likes vanilla the best.
In the table we can see that 10 children like vanilla so the probability is:
[tex]P(ChildandVanilla)=\frac{10}{249}=0.0402=4.02%[/tex]
e)
Likes strawberry the best, GIVEN that the person is a child.
In this case we can make use of the following formula:
[tex]P(B/A)=\frac{P(AandB)}{P(A)}[/tex]
so we can get the desired probabilities. First, for the probability of the person liking strawberry the best and the person being a child, we know that 44 children like strawberry the best, so the probability is:
[tex]P(childrenandstrawberry)=\frac{44}{249}[/tex]
Then, we know there are 40+10+44=94 children, so the probability for the person being a child is:
[tex]P(Child)=\frac{94}{249}[/tex]
Therefore:
[tex]P(Strawberry/Child)=\frac{\frac{44}{249}}{\frac{94}{249}}[/tex]
[tex]P(Strawberry/Child)=\frac{22}{47}=0.4681=46.81%[/tex]
f)
The same works for the probability of the person being a child given that the person likes strawberry the best.
First, for the probability of the person liking strawberry the best and the person being a child, we know that 44 children like strawberry the best, so the probability is:
[tex]P(childrenandstrawberry)=\frac{44}{249}[/tex]
Then, we know there are 44+38+13 persons like strawberry, so the probability for the person liking strawberry is:
[tex]P(Child)=\frac{95}{249}[/tex]
Therefore:
[tex]P(Child/Strawberry)=\frac{\frac{44}{249}}{\frac{95}{249}}[/tex]
[tex]P(Child/strawberry)=\frac{44}{95}=0.4632=46.32%[/tex]