(4 + 4i)/(5+4i) = divide

Answer:
B.
Step-by-step explanation:
[tex] \frac{4 + 4i}{5 + 4i} [/tex]
[tex] \frac{4 + 4i}{5 + 4i} \times \frac{5 - 4i}{5-4i} [/tex]
[tex] \frac{(4 + 4i)(5 - 4i)}{(5 + 4i)(5 - 4i)} [/tex]
[tex] \frac{20-16i+20i-16i^2}{(5) {}^{2} - (4i) {}^{2} } [/tex]
(combining like terms)
[tex] \frac{20+(-16i+20i)-(-16)}{25-(-16)} [/tex]
[tex] \frac{(20+16)+4i}{25+16} [/tex]
[tex] \frac{36+4i}{41} [/tex]
distributing the denominator
[tex] \frac{36}{41} + \frac{4}{41}i [/tex]
That is, option B.