Respuesta :

Answer:

[tex]f(n) = \frac{32}{3}(\frac{3}{2})^n[/tex]

Step-by-step explanation:

Given

[tex]r = \frac{3}{2}[/tex]

[tex]f(5) = 81[/tex]

Required

The geometric sequence

A geometric sequence is represented as:

[tex]f(n) = ar^{n-1}[/tex]

Replace n with 5

[tex]f(5) = ar^{5-1}[/tex]

[tex]f(5) = ar^4[/tex]

Substitute values for f(5) and r

[tex]81 = a* (\frac{3}{2})^4[/tex]

Open bracket

[tex]81 = a* \frac{81}{16}[/tex]

Make a the subject

[tex]a = \frac{81 * 16}{81}[/tex]

[tex]a = 16[/tex]

So, the explicit function is:

[tex]f(n) = ar^{n-1}[/tex]

[tex]f(n) = 16 * (\frac{3}{2})^{n-1}[/tex]

Split

[tex]f(n) = 16 * (\frac{3}{2})^n \div (\frac{3}{2})[/tex]

Convert to multiplication

[tex]f(n) = 16 * (\frac{3}{2})^n * \frac{2}{3}[/tex]

[tex]f(n) = \frac{32}{3}(\frac{3}{2})^n[/tex]