Respuesta :

Space

Answer:

[tex]\displaystyle A = 12[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

  • Functions
  • Function Notation
  • Graphing

Calculus

Integrals

  • Definite Integrals
  • Area under the curve

Integration Rule [Reverse Power Rule]:                                                               [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                     [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Area of a Region Formula:                                                                                     [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

y = x

Interval: x = 1 to x = 5

Step 2: Sort

Graph the function. See Attachment.

Bounds of Integration: [1, 5]

Step 3: Find Area

  1. Substitute in variables [Area of a Region Formula]:                                   [tex]\displaystyle A = \int\limits^5_1 {x} \, dx[/tex]
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:                     [tex]\displaystyle A = \frac{x^2}{2} \bigg| \limits^5_1[/tex]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           [tex]\displaystyle A = 12[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

Ver imagen Space