Respuesta :
Answer:
A. (b)
B. (a)
Explanation:
The electric dipole moment is the product of charge and the length of the dipole.
The torque on the dipole placed in the external electric field is given by
torque = p E sin A
where, p is the electric dipole moment, E is the electric field, A is the angle between the field and dipole moment.
When the dipole moment is parallel to the electric field, the net torque is zero and it is said to be in stable equilibrium.
When the dipole moment is anti parallel to the electric field, the net torque is zero but the dipole is in unstable equilibrium.
So, the option (b) is correct.
Teh energy is given by
U = - p E cos A
When the angle A is zero , the potential energy is negative and it is minimum.
In this exercise we have to use the knowledge about dipole to be able to mark the correct alternative for each question, in this way we find that:
A) Letter b
B) Letter a
So knowing that the electric dipole moment is the product of charge and the length of the dipole and the torque on the dipole placed in the external electric field is given by:
[tex]torque = p E sin (A)[/tex]
where:
- p: the electric dipole moment
- E: the electric field
- A: the angle between the field and dipole moment
When the dipole moment is parallel to the electric field, the net torque is zero and it is said to be in stable equilibrium. When the dipole moment is anti parallel to the electric field, the net torque is zero but the dipole is in unstable equilibrium.
Now the energy is given by:
[tex]U = - p E cos (A)[/tex]
We can say that when the angle A is zero , the potential energy is negative and it is minimum.
See more about dipole at brainly.com/question/12757739