Respuesta :
Answer:
[tex]\displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}[/tex]
General Formulas and Concepts:
Algebra I
- Exponential Rule [Powering]: [tex]\displaystyle (b^m)^n = b^{m \cdot n}[/tex]
- Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
- Exponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]
Calculus
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \frac{3x + 5}{\sqrt{x}}[/tex]
Step 2: Differentiate
- Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle \frac{3x + 5}{x^\bigg{\frac{1}{2}}}[/tex]
- Quotient Rule: [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{(x^\bigg{\frac{1}{2}})^2}[/tex]
- Simplify [Exponential Rule - Powering]: [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})\frac{d}{dx}[3x + 5] - \frac{d}{dx}[x^\bigg{\frac{1}{2}}](3x + 5)}{x}[/tex]
- Basic Power Rule [Derivative Property - Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx} = \frac{(x^\bigg{\frac{1}{2}})(3x^{1 - 1} + 0) - (\frac{1}{2}x^\bigg{\frac{1}{2} - 1})(3x + 5)}{x}[/tex]
- Simplify: [tex]\displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2}x^\bigg{\frac{-1}{2}})(3x + 5)}{x}[/tex]
- Rewrite [Exponential Rule - Rewrite]: [tex]\displaystyle \frac{d}{dx} = \frac{3x^\bigg{\frac{1}{2}} - (\frac{1}{2x^{\frac{1}{2}}})(3x + 5)}{x}[/tex]
- Rewrite [Exponential Rule - Root Rewrite]: [tex]\displaystyle \frac{d}{dx} = \frac{3\sqrt{x} - (\frac{1}{2\sqrt{x}})(3x + 5)}{x}[/tex]
- Simplify [Rationalize]: [tex]\displaystyle \frac{d}{dx} = \frac{3x - 5}{2x^\bigg{\frac{3}{2}}}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e