Respuesta :

Space

Answer:

[tex]\displaystyle A = \frac{32}{3}[/tex]

General Formulas and Concepts:

Calculus

Integrals

  • Definite Integrals
  • Area under the curve

Integration Rule [Reverse Power Rule]:                                                                   [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                        [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                             [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                           [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Area of a Region Formula:                                                                                       [tex]\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

Curve: x³ + 2x² - 3x

Interval: [-3, 1]

Step 2: Find Area

  1. Set up:                                                                                                               [tex]\displaystyle A = \int\limits^1_{-3} {(x^3 + 2x^2 - 3x)} \, dx[/tex]
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:                   [tex]\displaystyle A = \int\limits^1_{-3} {x^3} \, dx + \int\limits^1_{-3} {2x^2} \, dx - \int\limits^1_{-3} {3x} \, dx[/tex]
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:                   [tex]\displaystyle A = \int\limits^1_{-3} {x^3} \, dx + 2\int\limits^1_{-3} {x^2} \, dx - 3\int\limits^1_{-3} {x} \, dx[/tex]
  4. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:                      [tex]\displaystyle A = (\frac{x^4}{4}) \bigg| \limits^1_{-3} + 2(\frac{x^3}{3}) \bigg| \limits^1_{-3} - 3(\frac{x^2}{2}) \bigg| \limits^1_{-3}[/tex]
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              [tex]\displaystyle A = -20 + 2(\frac{28}{3}) - 3(-4)[/tex]
  6. Evaluate:                                                                                                           [tex]\displaystyle A = \frac{32}{3}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e