Respuesta :

Space

Answer:

a. 18

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Distributive Property

Algebra I

  • Terms/Coefficients

Calculus

Integrals

  • Definite Integrals

Integration Rule [Reverse Power Rule]:                                                                      [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]

Integration Rule [Fundamental Theorem of Calculus 1]:                                        [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]

Integration Property [Multiplied Constant]:                                                             [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]

Integration Property [Addition/Subtraction]:                                                           [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle \int\limits^2_0 {x(4x^2 + 1)} \, dx[/tex]

Step 2: Integrate

  1. [Integrand] Distribute x [Distributive Property]:                                              [tex]\displaystyle \int\limits^2_0 {(4x^3 + x)} \, dx[/tex]
  2. Rewrite Integral [Integration Property - Addition/Subtraction]:                     [tex]\displaystyle \int\limits^2_0 {4x^3} \, dx + \int\limits^2_0 {x} \, dx[/tex]
  3. Rewrite 1st Integral [Integration Property - Multiplied Constant]:                 [tex]\displaystyle 4\int\limits^2_0 {x^3} \, dx + \int\limits^2_0 {x} \, dx[/tex]
  4. [Integrals] Reverse Power Rule:                                                                      [tex]\displaystyle 4(\frac{x^4}{4}) \bigg| \limits^2_0 + (\frac{x^2}{2}) \bigg| \limits^2_0[/tex]
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              [tex]\displaystyle 4(4) + 2[/tex]
  6. Evaluate:                                                                                                           [tex]\displaystyle 18[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e