Respuesta :
Answer:
a. 18
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Distributive Property
Algebra I
- Terms/Coefficients
Calculus
Integrals
- Definite Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int\limits^2_0 {x(4x^2 + 1)} \, dx[/tex]
Step 2: Integrate
- [Integrand] Distribute x [Distributive Property]: [tex]\displaystyle \int\limits^2_0 {(4x^3 + x)} \, dx[/tex]
- Rewrite Integral [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int\limits^2_0 {4x^3} \, dx + \int\limits^2_0 {x} \, dx[/tex]
- Rewrite 1st Integral [Integration Property - Multiplied Constant]: [tex]\displaystyle 4\int\limits^2_0 {x^3} \, dx + \int\limits^2_0 {x} \, dx[/tex]
- [Integrals] Reverse Power Rule: [tex]\displaystyle 4(\frac{x^4}{4}) \bigg| \limits^2_0 + (\frac{x^2}{2}) \bigg| \limits^2_0[/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle 4(4) + 2[/tex]
- Evaluate: [tex]\displaystyle 18[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e