Respuesta :

Given:

The gradient of the line passing through A(2,3), B(k,7) is [tex]\dfrac{2}{3}[/tex].

To find:

The value of k.

Solution:

The gradient or slope of a line is:

[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]

The gradient of the line passing through A(2,3), B(k,7) is [tex]\dfrac{2}{3}[/tex]. So,

[tex]\dfrac{2}{3}=\dfrac{7-3}{k-2}[/tex]

[tex]\dfrac{2}{3}=\dfrac{4}{k-2}[/tex]

On cross multiplication, we get

[tex]2(k-2)=4(3)[/tex]

[tex]2k-4=12[/tex]

[tex]2k=12+4[/tex]

[tex]2k=16[/tex]

Divide both sides by 2.

[tex]k=\dfrac{16}{2}[/tex]

[tex]k=8[/tex]

Therefore, the value of k is 8.