Respuesta :

Answer:

[tex]\cos(\theta)= \frac{\sqrt{377}}{29}[/tex]

Step-by-step explanation:

Given

[tex]\sin(\theta) = -\frac{4}{\sqrt{29}}[/tex] -- the correct expression

Required

[tex]\cos(\theta)[/tex]

We know that:

[tex]\sin^2(\theta) + \cos^2(\theta)= 1[/tex]

Make [tex]\cos^2(\theta)[/tex] the subject

[tex]\cos^2(\theta)= 1 - \sin^2(\theta)[/tex]

Substitute: [tex]\sin(\theta) = -\frac{4}{\sqrt{29}}[/tex]

[tex]\cos^2(\theta)= 1 - (-\frac{4}{\sqrt{29}})^2[/tex]

Evaluate all squares

[tex]\cos^2(\theta)= 1 - (\frac{16}{29})[/tex]

Take LCM

[tex]\cos^2(\theta)= \frac{29 - 16}{29}[/tex]

[tex]\cos^2(\theta)= \frac{13}{29}[/tex]

Take square roots of both sides

[tex]\cos(\theta)= \±\sqrt{\frac{13}{29}}[/tex]

cosine is positive in the 4th quadrant;

So:

[tex]\cos(\theta)= \sqrt{\frac{13}{29}}[/tex]

Split

[tex]\cos(\theta)= \frac{\sqrt{13}}{\sqrt{29}}[/tex]

Rationalize

[tex]\cos(\theta)= \frac{\sqrt{13}}{\sqrt{29}} * \frac{\sqrt{29}}{\sqrt{29}}[/tex]

[tex]\cos(\theta)= \frac{\sqrt{13*29}}{29}[/tex]

[tex]\cos(\theta)= \frac{\sqrt{377}}{29}[/tex]