Respuesta :

Answer:

[tex](a)\ m = \frac{4}{3}[/tex] --- slope of OA

[tex](b)\ y = \frac{4}{3}x[/tex] --- the equation

Step-by-step explanation:

Given

The attached graph

Solving (a): Slope of OA

First, we identify two points on OA

[tex](x_1,y_1) = (0,0)[/tex]

[tex](x_2,y_2) = (3,4)[/tex]

So, the slope (m) is:

[tex]m = \frac{y_2 -y_1}{x_2 - x_1}[/tex]

This gives:

[tex]m = \frac{4-0}{3-0}[/tex]

[tex]m = \frac{4}{3}[/tex]

Solving (b): The equation

This is calculated as:

[tex]y = m(x - x_1) + y_1[/tex]

Recall that:

[tex](x_1,y_1) = (0,0)[/tex]

[tex]m = \frac{4}{3}[/tex]

So, we have:

[tex]y = \frac{4}{3}(x - 0) + 0[/tex]

[tex]y = \frac{4}{3}(x)[/tex]

[tex]y = \frac{4}{3}x[/tex]