The vertices of a triangle are P(-6,1), Q(-2,-5) and R(8,1).

Find the equation of the perpendicular bisector of the side QR

Respuesta :

Answer:

Step-by-step explanation:

Find the slope of QR. From that we can find the the slope of the line perpendicular to QR.

Q(-2, -5)   & R(8,1)

[tex]Slope \ = \frac{y_{2}-y_{1}}{x_{2}-x_{1}}\\\\=\frac{1-[-5]}{8-[-2]}\\\\=\frac{1+5}{8+2}\\\\=\frac{6}{10}\\\\=\frac{-3}{5}[/tex]

So, the slope of the line perpendicular to QR =  -1/m - 1÷ [tex]\frac{-5}{3} = -1*\frac{-3}{5}=\frac{3}{5}[/tex]

Bisector of QR divides the line QR to two half. We have find the midpoint of QR.

Midpoint = [tex](\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})[/tex]

               [tex]=(\frac{-2+8}{2},\frac{-5+1}{2})\\\\=(\frac{6}{2},\frac{-4}{2})\\\\=(3,-2)[/tex]

slope = 3/5  and the required line passes through (3 , -2)

y - y1 = m(x-x1)

[tex]y - [-2] = \frac{3}{5}(x - 3)\\\\y + 2 = \frac{3}{5}x-\frac{3}{5}*3\\\\y=\frac{3}{5}x-\frac{9}{5}-2\\\\y=\frac{3}{5}x-\frac{9}{5}-\frac{2*5}{1*5}\\\\y=\frac{3}{5}x-\frac{9}{5}-\frac{10}{5}\\\\y=\frac{3}{5}x-\frac{19}{5}[/tex]