Respuesta :

Answer:

[tex]x = log_{2}( \frac{4+12 \sqrt{12} }{17} ) [/tex]

Step-by-step explanation:

I have attached the explanation above. hopefully this help

Ver imagen lacor77174

Answer:  [tex]\Large\boxed{x=log_2\frac{12\sqrt{2}+4}{17}}[/tex]

Step-by-step explanation:                                                                                          [tex]\displaystyle\ \bigg{2^x-3(2^{x+\frac{1}{2} }})+2^2=0 \qquad ; \ \ \boxed{t=2^x} \\\\t-3t\sqrt{2} +4=0 \\\\ t(1-3\sqrt{2} )=-4 \\\\ t=\frac{4}{3\sqrt{2} -1} \cdot \frac{3\sqrt{2}+1 }{3\sqrt{2}+1 } =\frac{12\sqrt{2}+4}{17} \\\\\\2^x=\frac{12\sqrt{2}+4}{17} \\\\x=log_2 \ \ \frac{12\sqrt{2}+4}{17}[/tex]