The weights of certain machine components are normally distributed with a mean of 5.19 ounces and a standard deviation of 0.05 ounces. Find the two weights that separate the top 8% and the bottom 8%. These weights could serve as limits used to identify which components should be rejected

Respuesta :

Answer:

The  weight that separate the top 8% by 5.2605 and the weight that separate bottom 8% by 5.1195.

Step-by-step explanation:

We are given that

Mean,[tex]\mu=5.19[/tex]

Standard deviation,[tex]\sigma=0.05[/tex]

We have to find the two weights that separate the top 8% and the bottom 8%.

Let x1 and x2 the two weights that separate the top 8% and the bottom 8%.

Z-value for p-value =0.08 =[tex]-1.41[/tex]

For 8% bottom

[tex]Z=\frac{x_1-\mu}{\sigma}=-1.41[/tex]

[tex]\frac{x_1-5.19}{0.05}=-1.41[/tex]

[tex]x_1-5.19=-1.41\times 0.05[/tex]

[tex]x_1=-1.41\times 0.05+5.19[/tex]

[tex]x_1=5.1195[/tex]

For 8% top

p-Value=1-0.08=0.92

Z- value=1.41

Now,

[tex]\frac{x_2-5.19}{0.05}=1.41[/tex]

[tex]x_2-5.19=1.41\times 0.05[/tex]

[tex]x_2=1.41\times 0.05+5.19[/tex]

[tex]x_2=5.2605[/tex]

(x1,x2)=(5.1195,5.2605)