Respuesta :

Answer:

Area of ellipse=[tex]\pi ab[/tex]

Step-by-step explanation:

We are given that

[tex]x=acos\theta[/tex]

[tex]y=bsin\theta[/tex]

[tex]0\leq\theta\leq 2\pi[/tex]

We have to find the area enclose by it.

[tex]x/a=cos\theta, y/b=sin\theta[/tex]

[tex]sin^2\theta+cos^2\theta=x^2/a^2+y^2/b^2[/tex]

Using the formula

[tex]sin^2x+cos^2x=1[/tex]

[tex]\frac{x^2}{a^2}+\frac{y^2}{b^2}=1[/tex]

This is the equation of ellipse.

Area of ellipse

=[tex]4\int_{0}^{a}\frac{b}{a}\sqrt{a^2-x^2}dx[/tex]

When x=0,[tex]\theta=\pi/2[/tex]

When x=a, [tex]\theta=0[/tex]

Using the formula

Area of ellipse

=[tex]\frac{4b}{a}\int_{\pi/2}^{0}\sqrt{a^2-a^2cos^2\theta}(-asin\theta)d\theta[/tex]

Area of ellipse=[tex]-4ba\int_{\pi/2}^{0}\sqrt{1-cos^2\theta}(sin\theta)d\theta[/tex]

Area of ellipse=[tex]-4ba\int_{\pi/2}^{0} sin^2\theta d\theta[/tex]

Area of ellipse=[tex]-2ba\int_{\pi/2}^{0}(2sin^2\theta)d\theta[/tex]

Area of ellipse=[tex]-2ba\int_{\pi/2}^{0}(1-cos2\theta)d\theta[/tex]

Using the formula

[tex]1-cos2\theta=2sin^2\theta[/tex]

Area of ellipse=[tex]-2ba[\theta-1/2sin(2\theta)]^{0}_{\pi/2}[/tex]

Area of ellipse[tex]=-2ba(-\pi/2-0)[/tex]

Area of ellipse=[tex]\pi ab[/tex]