What is the length of leg s of the triangle below?
45
4-12
90°
45

Answer:
A
Step-by-step explanation:
Using the cosine ratio in the right triangle and the exact value
cos45° = [tex]\frac{1}{\sqrt{2} }[/tex] , then
cos45° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{s}{4\sqrt{2} }[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )
s × [tex]\sqrt{2}[/tex] = 4[tex]\sqrt{2}[/tex] ( divide both sides by [tex]\sqrt{2}[/tex] )
s = 4 → A