Answer:
[tex]4\log_bx - \log_by = \log(\frac{x^4}{y})[/tex]
Step-by-step explanation:
Given
[tex]4\log_bx - \log_by[/tex]
Required
Express as a single expression
Using power rule of logarithm, we have:
[tex]n\log m = \log m^n[/tex]
So, we have:
[tex]4\log_bx - \log_by = \log_bx^4 - \log_by[/tex]
Apply quotient rule of logarithm
[tex]4\log_bx - \log_by = \log(\frac{x^4}{y})[/tex]