Respuesta :

Answer:

The quadrilateral is a rhombus

Step-by-step explanation:

Given

[tex]A = (2, 8)[/tex]

[tex]B = (3, 11)[/tex]

[tex]C = (4, 8)[/tex]

[tex]D=(3, 5)[/tex]

Required

The true statement

Calculate slope (m) using

[tex]m = \frac{y_2 - y_1}{x_2 - x_1}[/tex]

Calculate distance using:

[tex]d= \sqrt{(x_2 - x_1)^2 + (y_2 -y_1)^2}[/tex]

Calculate slope and distance AB

[tex]m_{AB} = \frac{11 - 8}{3 - 2}[/tex]

[tex]m_{AB} = \frac{3}{1}[/tex]

[tex]m_{AB} = 3[/tex] -- slope

[tex]d_{AB}= \sqrt{(3 - 2)^2 + (11 -8)^2}[/tex]

[tex]d_{AB}= \sqrt{10}[/tex] -- distance

Calculate slope and distance BC

[tex]m_{BC} = \frac{8 - 11}{4 - 3}[/tex]

[tex]m_{BC} = \frac{- 3}{1}[/tex]

[tex]m_{BC} = -3[/tex] -- slope

[tex]d_{BC} = \sqrt{(4-3)^2+(8-11)^2[/tex]

[tex]d_{BC} = \sqrt{10}[/tex] --- distance

Calculate slope CD

[tex]m_{CD} = \frac{5 - 8}{3 - 4}[/tex]

[tex]m_{CD} = \frac{- 3}{- 1}[/tex]

[tex]m_{CD} = 3[/tex] -- slope

[tex]d_{CD} = \sqrt{(3-4)^2+(5-8)^2}[/tex]

[tex]d_{CD} = \sqrt{10}[/tex] -- distance

Calculate slope DA

[tex]m_{DA} = \frac{8 - 5}{2 - 3}[/tex]

[tex]m_{DA} = \frac{3}{- 1}[/tex]

[tex]m_{DA} = -3[/tex] -- slope

[tex]d_{DA} = \sqrt{(2-3)^2 + (8-5)^2}[/tex]

[tex]d_{DA} = \sqrt{10}[/tex]

From the computations above, we can see that all 4 sides are equal, i.e. [tex]\sqrt{10}[/tex]

And the slope of adjacent sides are negative reciprocal, i.e.

[tex]m_{AB} = 3[/tex]  and [tex]m_{CD} = -3[/tex]

[tex]m_{CD} = 3[/tex] and [tex]m_{DA} = -3[/tex]

The quadrilateral is a rhombus