Respuesta :

Answer :)

  • [tex]\sf{(2x+5)(7-4x) }[/tex]

  • [tex]\sf{2x(7-4x)+5(7-4x) }[/tex]

  • [tex]\sf{14x-8x^{2}+35-20x }[/tex]

  • [tex]\sf{ -8x^{2}-6x+35 }[/tex]

[tex]\\\\\\[/tex]

Therefore

  • [tex]\sf{Option~ D ~is ~correct }[/tex]

[tex]\sf{ }[/tex]

[tex]\sf{ }[/tex]

[tex]\sf{ }[/tex]

[tex]\sf{ }[/tex] [tex]\sf{ }[/tex] [tex]\sf{ }[/tex] [tex]\sf{ }[/tex] [tex]\sf{ }[/tex]

Answer:

-8x² -6x + 35

Step-by-step explanation:

A expression is given to us and we need to find out the quadratic equation . For that Multiply the two terms of the quadratic equation. The given expression is ,

Given expression :-

[tex]\rm\implies ( 2x +5)( 7 - 4x ) [/tex]

Multiply the terms :-

[tex]\rm\implies 2x ( 7 - 4x )+5(7-4x) [/tex]

Simplifying the brackets :-

[tex]\rm\implies 14x - 8x^2 + 35 - 20x [/tex]

Rearrange and simplify :-

[tex]\rm\implies -8x^2 -6x + 35 [/tex]

Therefore :-

[tex]\rm\implies\boxed{ \rm Quadratic\ Equation \ = -8x^2 -6x + 35} [/tex]