Respuesta :

Answer:

3.84

Step-by-step explanation:

Given that , y varies inversely as the square of x . Mathematically we can write this statement as ,

[tex]\implies\rm y \propto \dfrac{1}{x^2}[/tex]

Let k be the constant . Therefore ,

[tex]\implies\rm y = k \dfrac{1}{x^2}[/tex]

When y = 1.5 and x = 8 :-

  • Plug in the respective values ,

[tex]\implies\rm y = k \dfrac{1}{x^2} \\\\\implies\rm 1.5 = k \times \dfrac{1}{8^2} \\\\\implies\rm k = 1.5 \times 64 \\\\\implies\rm k = 96[/tex]

When x = 5 :-

[tex]\implies\rm y = k \dfrac{1}{x^2} \\\\\implies\rm y = 96 \times \dfrac{1}{5^2}=\dfrac{ 96}{25} \\\\\implies\rm\boxed{ y = 3.84 }[/tex]

Answer: 3.84

hope it helped!