Respuesta :
Answer:
3.84
Step-by-step explanation:
Given that , y varies inversely as the square of x . Mathematically we can write this statement as ,
[tex]\implies\rm y \propto \dfrac{1}{x^2}[/tex]
Let k be the constant . Therefore ,
[tex]\implies\rm y = k \dfrac{1}{x^2}[/tex]
When y = 1.5 and x = 8 :-
- Plug in the respective values ,
[tex]\implies\rm y = k \dfrac{1}{x^2} \\\\\implies\rm 1.5 = k \times \dfrac{1}{8^2} \\\\\implies\rm k = 1.5 \times 64 \\\\\implies\rm k = 96[/tex]
When x = 5 :-
[tex]\implies\rm y = k \dfrac{1}{x^2} \\\\\implies\rm y = 96 \times \dfrac{1}{5^2}=\dfrac{ 96}{25} \\\\\implies\rm\boxed{ y = 3.84 }[/tex]