Respuesta :

Answer:

NO

Step-by-step explanation:

To find the length of AB

AB = sqrt( (x2-x1)^2 + (y2-y1)^2)

      = sqrt ( ( 2 - -1)^2+ ( -1 -3)^2)

      = sqrt( 3^2 + (-4)^2)

      = sqrt(9+16)

    = sqrt(25)

    = 5

To find the length of AC

AC = sqrt( (x2-x1)^2 + (y2-y1)^2)

      = sqrt ( ( -4 - -1)^2+ ( -1 -3)^2)

      = sqrt( ( -3)^2 + (-4)^2)

      = sqrt(9+16)

    = sqrt(25)

    = 5

To find the length of BC

BC = sqrt( (x2-x1)^2 + (y2-y1)^2)

      = sqrt ( ( -4-2)^2+ ( -1 --1)^2)

      = sqrt( ( -6)^2 + (0)^2)

      = sqrt(36)

    = 6

    This is not an equilateral triangle since BC is not equal to AB = AC

Answer:

  • AB = AC = 5 units
  • BC = 6 units
  • No it is not a equilateral triangle

Step-by-step explanation:

Some coordinates of a triangle is given to us. And we need to find the length of AB , BC and AC . The given coordinates are ,

[tex]\rm\implies Coordinates = A(-1,3) , B(2,-1) \ and \ C(-4,-1) [/tex]

We can use the Distance Formula to find the length of sides of the triangle .

Finding length of AB :-

[tex]\rm\implies Distance =\sqrt{ ( x_2-x_1)^2+(y_2-y_1)^2} \\\\\rm\implies \overline{AB}= \sqrt{ (-1-2)^2+(-1-3)^2} \\\\\rm\implies \overline{AB}= \sqrt{ (-3)^2+(-4)^2} \\\\\rm\implies \overline{AB}= \sqrt{ 9 + 16} \\\\\rm\implies \overline{AB}= \sqrt{25} \\\\\rm\implies\boxed{\red{\rm \overline{AB}= 5 \ units}}[/tex]

Finding length of AC :-

[tex]\rm\implies Distance =\sqrt{ ( x_2-x_1)^2+(y_2-y_1)^2} \\\\\rm\implies \overline{AC}= \sqrt{ (-1+4)^2+(-1-3)^2 }\\\\\rm\implies \overline{AC}= \sqrt{ (-3)^2+(-4)^2} \\\\\rm\implies \overline{AC}= \sqrt{ 9 + 16} \\\\\rm\implies \overline{AC}= \sqrt{25} \\\\\rm\implies\boxed{\red{\rm \overline{AC}= 5 \ units}}[/tex]

Finding length of BC :-

[tex]\rm\implies Distance =\sqrt{ ( x_2-x_1)^2+(y_2-y_1)^2} \\\\\rm\implies \overline{BC}= \sqrt{ (-4-2)^2+(-1-1)^2} \\\\\rm\implies \overline{BC}= \sqrt{ 6^2+0^2} \\\\\rm\implies \overline{BC}= \sqrt{ 36+0} \\\\\rm\implies \overline{BC}= \sqrt{36} \\\\\rm\implies\boxed{\red{\rm \overline{BC}= 6 \ units}}[/tex]

Is it a Equilateral triangle ?

No the given triangle is not a equilateral triangle since the measure of all sides is not same.