Respuesta :

Answer:

[tex](f\cdot g)(x) = 2x^3 + 5x^2-x-6[/tex]

Step-by-step explanation:

We are given the two functions:

[tex]f(x)=2x^2+x-3\text{ and } g(x)=x+2[/tex]

And we want to find:

[tex](f \cdot g)(x)[/tex]

Recall that this is equivalent to:

[tex]=f(x)\cdot g(x)[/tex]

Substitute. Hence:

[tex](f\cdot g)(x)= (2x^2+x-3)(x+2)[/tex]

Expand if desired:

[tex]\displaystyle = x(2x^2+x-3)+2(2x^2+x-3) \\ \\ = (2x^3+x^2-3x)+(4x^2+2x-6) \\ \\\ = 2x^3 + 5x^2-x-6[/tex]

Answer:

2x^3+5x^2-x-6

Step-by-step explanation:

f(x) = 2x^2 + x − 3 and g(x) = x + 2.

(f • g)(x) = (2x^2 + x − 3 ) * (x + 2)

Distribute

           =  (2x^2 + x − 3 )*x + (2x^2 + x − 3 )*2

            = 2x^3 +x^2 -3x + 4x^2 +2x -6

Combine like terms

            =2x^3+5x^2-x-6