Respuesta :

Answer:

The correct solution is "0.0226".

Step-by-step explanation:

The given question seems to be incomplete. Please find below the attachment of the complete query.

According to the question,

Mean

= 29

Standard deviation (s),

= 8

For sample size pf 92,

The standard error will be:

[tex]SE=\frac{s}{\sqrt{N} }[/tex]

     [tex]=\frac{8}{\sqrt{92} }[/tex]

     [tex]=0.834[/tex]

now,

⇒ [tex]1-P(\frac{-1.9}{0.834} < z < \frac{1.9}{0.834} )[/tex] = [tex]1-P(-2.28<z<2.28)[/tex]

or,

                                          = [tex]1-(2\times P(z<2.28)-1)[/tex]

                                          = [tex]2-2\times P(z<2.28)[/tex]

With the help of table, the normal distribution will be:

=  [tex]2-2\times 0.9887[/tex]

= [tex]0.0226[/tex]

Ver imagen Cricetus