Find a polar equation for the curve represented by the given Cartesian equation. (Use t in lieu of θ in your answer.) x2+y2=8cx

Respuesta :

Answer:

The polar equation of the curve is:

[tex]r=8c*cos(\theta)[/tex]

Step-by-step explanation:

In polar form x and y could be written as:

[tex]x=rcos(\theta)[/tex]

[tex]y=rsin(\theta)[/tex]

Taking the square of each value we have:

Let's recall that [tex]cos^{2}(\theta)+sin^{2}(\theta)=1[/tex]

[tex]x^{2}+y^{2}=r^{2}(cos^{2}(\theta)+sin^{2}(\theta))[/tex]

[tex]x^{2}+y^{2}=r^{2}[/tex]

Then, the cartesian equation is rewritten as:

[tex]x^{2}+y^{2}=8cx[/tex]

[tex]r^{2}=8c*rcos(\theta)[/tex]

Therefore, the polar equation of the curve is:

[tex]r=8c*cos(\theta)[/tex]

I hope it helps you!