Respuesta :

Answer:

[tex]f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.[/tex]

Step-by-step explanation:

Given

[tex]9 < x < 10[/tex] --- interval

Required

The probability density of the volume of the cube

The volume of a cube is:

[tex]v = x^3[/tex]

For a uniform distribution, we have:

[tex]x \to U(a,b)[/tex]

and

[tex]f(x) = \left \{ {{\frac{1}{b-a}\ a \le x \le b} \atop {0\ elsewhere}} \right.[/tex]

[tex]9 < x < 10[/tex] implies that:

[tex](a,b) = (9,10)[/tex]

So, we have:

[tex]f(x) = \left \{ {{\frac{1}{10-9}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex]

Solve

[tex]f(x) = \left \{ {{\frac{1}{1}\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex]

[tex]f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex]

Recall that:

[tex]v = x^3[/tex]

Make x the subject

[tex]x = v^\frac{1}{3}[/tex]

So, the cumulative density is:

[tex]F(x) = P(x < v^\frac{1}{3})[/tex]

[tex]f(x) = \left \{ {{1\ 9 \le x \le 10} \atop {0\ elsewhere}} \right.[/tex] becomes

[tex]f(x) = \left \{ {{1\ 9 \le x \le v^\frac{1}{3} - 9} \atop {0\ elsewhere}} \right.[/tex]

The CDF is:

[tex]F(x) = \int\limits^{v^\frac{1}{3}}_9 1\ dx[/tex]

Integrate

[tex]F(x) = [v]\limits^{v^\frac{1}{3}}_9[/tex]

Expand

[tex]F(x) = v^\frac{1}{3} - 9[/tex]

The density function of the volume F(v) is:

[tex]F(v) = F'(x)[/tex]

Differentiate F(x) to give:

[tex]F(x) = v^\frac{1}{3} - 9[/tex]

[tex]F'(x) = \frac{1}{3}v^{\frac{1}{3}-1}[/tex]

[tex]F'(x) = \frac{1}{3}v^{-\frac{2}{3}}[/tex]

[tex]F(v) = \frac{1}{3}v^{-\frac{2}{3}}[/tex]

So:

[tex]f(v) = \left \{ {{\frac{1}{3}v^{-\frac{2}{3}}\ 9^3 \le v \le 10^3} \atop {0, elsewhere}} \right.[/tex]