Which is the correct calculation of the y-coordinate of point A? 0 (0 - 0)2 + (1 - y2 = 2 O (0 - 1)² + (0- y2 = 22 (0-0)² + (1 - y2 = 2 (0 - 1)2 + (0-y2 = 2​

Which is the correct calculation of the ycoordinate of point A 0 0 02 1 y2 2 O 0 1 0 y2 22 00 1 y2 2 0 12 0y2 2 class=

Respuesta :

Answer:

The y-coordinate of point A is [tex]\sqrt{3}[/tex].  

Step-by-step explanation:

The equation of the circle is represented by the following expression:

[tex](x-h)^{2}+(y-k)^{2} = r^{2}[/tex] (1)

Where:

[tex]x[/tex] - Independent variable.

[tex]y[/tex] - Dependent variable.

[tex]h[/tex], [tex]k[/tex] - Coordinates of the center of the circle.

[tex]r[/tex] - Radius of the circle.

If we know that [tex]h = 0[/tex], [tex]k = 0[/tex] and [tex]r = 2[/tex], then the equation of the circle is:

[tex]x^{2} + y^{2} = 4[/tex] (1b)

Then, we clear [tex]y[/tex] within (1b):

[tex]y^{2} = 4 - x^{2}[/tex]

[tex]y = \pm \sqrt{4-x^{2}}[/tex] (2)

If we know that [tex]x = 1[/tex], then the y-coordinate of point A is:

[tex]y = \sqrt{4-1^{2}}[/tex]

[tex]y = \sqrt{3}[/tex]

The y-coordinate of point A is [tex]\sqrt{3}[/tex].