Respuesta :

Answer:

5.1 cm

Step-by-step explanation:

(Probable) Question;

Given a circle with center O and radius 2.4 cm. P is a point on the tangent that touches the circle at point Q, such that the length of the tangent from P to Q is 4.5 cm. Find the length of OP

The given parameters are;

The radius of the circle with enter at O, [tex]\overline{OQ}[/tex] = 2.4 cm

The length of the tangent from P to the circle at point Q, [tex]\overline{PQ}[/tex] = 4.5 cm

The length of OP = Required

By Pythagoras's theorem, we have;

[tex]\overline{OP}[/tex]² = [tex]\overline{OQ}[/tex]² + [tex]\overline{PQ}[/tex]²

∴ [tex]\overline{OP}[/tex]² = 2.4² + 4.5² = 26.01

[tex]\overline{OP}[/tex] = √26.01 = 5.1

The length of OP = 5.1 cm