Respuesta :

Answer:

[tex]Ratio = 8.8[/tex]

The exposure may be risk factor.

Explanation:

Given

[tex]\begin{array}{ccc}{Exposure\ Status} & {Cases} & {Control} & {Yes} & {11} & {108} & {No} & {5} & {436} & {Total} & {16} & {544} \ \end{array}[/tex]

Required

The odd ratio

First, we calculate the odds of exposure using:

[tex]Odds = \frac{With\ Exposure(Yes)}{Without\ Exposure (No)}[/tex]

For cases, we have:

[tex]Odds_{Cases} = \frac{11}{5}[/tex]

[tex]Odds_{Cases} = 2.20[/tex]

For controls, we have:

[tex]Odds_{Controls} = \frac{108}{436}[/tex]

[tex]Odds_{Controls} = 0.25[/tex]

So, the odds' ratio is:

[tex]Ratio = \frac{Odds_{Cases}}{Odds_{Controls}}[/tex]

[tex]Ratio = \frac{2.20}{0.25}[/tex]

[tex]Ratio = 8.8[/tex]

Conclusion about the odds' ratio

The calculated ratio is greater than (and also far from) 1.

This implies that there is a greater exposure than the controls.

So, we can conclude that the exposure may be risk factor.