Answer:
[tex]Ratio = 8.8[/tex]
The exposure may be risk factor.
Explanation:
Given
[tex]\begin{array}{ccc}{Exposure\ Status} & {Cases} & {Control} & {Yes} & {11} & {108} & {No} & {5} & {436} & {Total} & {16} & {544} \ \end{array}[/tex]
Required
The odd ratio
First, we calculate the odds of exposure using:
[tex]Odds = \frac{With\ Exposure(Yes)}{Without\ Exposure (No)}[/tex]
For cases, we have:
[tex]Odds_{Cases} = \frac{11}{5}[/tex]
[tex]Odds_{Cases} = 2.20[/tex]
For controls, we have:
[tex]Odds_{Controls} = \frac{108}{436}[/tex]
[tex]Odds_{Controls} = 0.25[/tex]
So, the odds' ratio is:
[tex]Ratio = \frac{Odds_{Cases}}{Odds_{Controls}}[/tex]
[tex]Ratio = \frac{2.20}{0.25}[/tex]
[tex]Ratio = 8.8[/tex]
Conclusion about the odds' ratio
The calculated ratio is greater than (and also far from) 1.
This implies that there is a greater exposure than the controls.
So, we can conclude that the exposure may be risk factor.