A gas mixture, with a total pressure of 300. torr, consists of equal masses of Ne (atomic weight 20.) and Ar (atomic weight 40.). What is the partial pressure of Ar, in torr

Respuesta :

Answer:

The partial pressure will be "100 torr".

Explanation:

Given:

[tex]P_{Ar} = 300 \ torr[/tex]

By assuming Ar and Ne having 50 gm each, we get

mol of Ne = [tex]\frac{50}{20}[/tex]

                = [tex]2.5 \ mol[/tex]

mol of Ar = [tex]\frac{50}{40}[/tex]

               = [tex]1.25 \ mol[/tex]

now,

[tex]n_T= mol.A_r+mol.N_e[/tex]

     [tex]=1.25+2.5[/tex]

     [tex]=3.75[/tex]

then,

[tex]X_{Ar}=\frac{n_{Ar}}{n_T}[/tex]

       [tex]=\frac{1.25}{3.75}[/tex]

       [tex]=0.33[/tex]

hence,

The partial pressure of Ar will be:

⇒ [tex]P_{Ar} = P_T\times X_{AT}[/tex]

By substituting the values, we get

           [tex]=300\times 0.33[/tex]

           [tex]=100 \ torr[/tex]

The partial pressure of Ar in the mixture is 99.9 torr

Let the mass of both gas be 10 g

Next, we shall determine mole of each gas.

For Ne:

Mass = 10 g

Molar mass of Ne = 20 g/mol

Mole of Ne =?

Mole = mass / molar mass

Mole of Ne = 10 / 20

Mole of Ne = 0.5 mole

For Ar:

Mass = 10 g

Molar mass of Ar = 40 g/mol

Mole of Ar =?

Mole = mass / molar mass

Mole of Ar = 10 / 40

Mole of Ar = 0.25 mole

Next, we shall determine the mole fraction of Ar

Mole of Ne = 0.5 mole

Mole of Ar = 0.25 mole

Total mole = 0.5 + 0.25 = 0.75 mole

Mole fraction of Ar =?

[tex]mole \: fraction \: = \frac{mole}{total \: mole} \\ \\ mole \: fraction \: of \:Ar = \frac{0.25}{0.75} \\ \\ mole \: fraction \: of \:Ar = 0.333 \\ \\ [/tex]

Finally, we shall determine the partial pressure of Ar

Mole fraction of Ar = 0.333

Total pressure = 300 torr

Partial pressure of Ar =?

Partial pressure = mole fraction × total pressure

Partial pressure of Ar = 0.333 × 300

Partial pressure of Ar = 99.9 torr

Learn more on partial pressure: https://brainly.com/question/15577259