Respuesta :

Answer:

504 cm²

Step-by-step explanation:

Let the length and the width of the rectangle be L cm and W cm respectively.

Perimeter= 2(L +W)

2(L +W)= 108

L +W= 108 ÷2

L +W= 54

L= 54 -W -----(1)

[tex] \frac{L}{W} = \frac{7}{2} [/tex]

Cross multiply:

2L= 7W -----(2)

Substitute (1) into (2):

2(54 -W)= 7W

Expand:

108 -2W= 7W

+2W on both sides:

9W= 108

Divide both sides by 9:

W= 108 ÷9

W= 12

Substitute W= 12 into (1):

L= 54 -12

L= 42

Area of rectangle

= length ×width

= LW

= 42(12)

= 504 cm²