Answer:
α = 1930.2 rad/s²
Explanation:
The angular acceleration can be found by using the third equation of motion:
[tex]2\alpha \theta=\omega_f^2-\omega_i^2[/tex]
where,
α = angular acceleration = ?
θ = angular displacement = (1500 rev)(2π rad/1 rev) = 9424.78 rad
ωf = final angular speed = 0 rad/s
ωi = initial angular speed = (960 rev/s)(2π rad/1 rev) = 6031.87 rad/s
Therefore,
[tex]2\alpha(9424.78\ rad) = (0\ rad/s)^2-(6031.87\ rad/s)^2\\\\\alpha = -\frac{(6031.87\ rad/s)^2}{(2)(9424.78\ rad)}[/tex]
α = - 1930.2 rad/s²
negative sign shows deceleration