Answer:
ωf = 8.8 rad/s
v = 2.2 m/s
Explanation:
We will use the third equation of motion to find the maximum angular velocity of the wheel:
[tex]2\alpha \theta = \omega_f^2 -\omega_I^2[/tex]
where,
α = angular acceleration = 6 rad/s²
θ = angular displacemnt = 1 rev = 2π rad
ωf = max. final angular velocity = ?
ωi = initial angular velocity = 1.5 rad/s
Therefore,
[tex]2(6\ rad/s^2)(2\pi\ rad)=\omega_f^2-(1.5\ rad/s)^2\\\omega_f^2=75.4\ rad/s^2+2.25\ rad/s^2\\\omega_f = \sqrt{77.65\ rad/s^2}[/tex]
ωf = 8.8 rad/s
Now, for linear velocity:
v = rω = (0.25 m)(8.8 rad/s)
v = 2.2 m/s