Respuesta :

msm555

f-¹(x)=[tex]\frac{2-7x}{x+2}[/tex]

Answer:

Solution given:

f(x)=[tex]\frac{-2x+2}{x+7}[/tex]

Let f(x)=y

y=[tex]\frac{-2x+2}{x+7}[/tex]

Interchanging role of x and y

x=[tex]\frac{-2y+2}{y+7}[/tex]

doing crisscrossed multiplication

x(y+7)=-2y+2

now solve it:

xy+7x=-2y+2

keep like terms in one side

xy+2y=2-7x

take common

y(x+2)=2-7x

make a value of y

y=[tex]\frac{2-7x}{x+2}[/tex]

So,

f-¹(x)=[tex]\frac{2-7x}{x+2}[/tex]

Answer:

ƒ^-1 (x) = [tex]\frac{2-7x}{2+x}[/tex]

Step-by-step explanation:

Substitute y for f (x)

[tex]y = \frac{-2x+2}{x+7}[/tex]

Interchange x and y

[tex]x=\frac{-2y+2}{y+7}[/tex]

Swap the sides of the equation

[tex]\frac{-2y+2}{y+7} = x[/tex]

Multiply both sides of the equation by y + 7

-2y + 2 = (y + 7)x

Distribute x through the parentheses

-2y + 2 = xy + 7x

Move the expression/constant to the left-hand side and change its sign

-2y - xy + 7x - 2

Factor out  from the expression

(-2 - x)y = 7x - 2

Divide both sides of the equation by -2 - x

[tex]y = \frac{7x-2}{-2-x}[/tex]

Simplify the expression

[tex]y = \frac{2-7x}{2+x}[/tex]

Substitute ƒ ^-1 (x) for y

[tex]f^{-1} (x) = \frac{2-7x}{2+x}[/tex]