find the inverse of the following function

f-¹(x)=[tex]\frac{2-7x}{x+2}[/tex]
Answer:
Solution given:
f(x)=[tex]\frac{-2x+2}{x+7}[/tex]
Let f(x)=y
y=[tex]\frac{-2x+2}{x+7}[/tex]
Interchanging role of x and y
x=[tex]\frac{-2y+2}{y+7}[/tex]
doing crisscrossed multiplication
x(y+7)=-2y+2
now solve it:
xy+7x=-2y+2
keep like terms in one side
xy+2y=2-7x
take common
y(x+2)=2-7x
make a value of y
y=[tex]\frac{2-7x}{x+2}[/tex]
So,
f-¹(x)=[tex]\frac{2-7x}{x+2}[/tex]
Answer:
ƒ^-1 (x) = [tex]\frac{2-7x}{2+x}[/tex]
Step-by-step explanation:
Substitute y for f (x)
[tex]y = \frac{-2x+2}{x+7}[/tex]
Interchange x and y
[tex]x=\frac{-2y+2}{y+7}[/tex]
Swap the sides of the equation
[tex]\frac{-2y+2}{y+7} = x[/tex]
Multiply both sides of the equation by y + 7
-2y + 2 = (y + 7)x
Distribute x through the parentheses
-2y + 2 = xy + 7x
Move the expression/constant to the left-hand side and change its sign
-2y - xy + 7x - 2
Factor out from the expression
(-2 - x)y = 7x - 2
Divide both sides of the equation by -2 - x
[tex]y = \frac{7x-2}{-2-x}[/tex]
Simplify the expression
[tex]y = \frac{2-7x}{2+x}[/tex]
Substitute ƒ ^-1 (x) for y
[tex]f^{-1} (x) = \frac{2-7x}{2+x}[/tex]