Respuesta :
Answer:
10.71%
Explanation:
The dissociation of acetic acid can be well expressed as follow:
CH₃COOH ⇄ CH₃COO⁻ + H⁺
Let assume that the prepared amount of the aqueous solution is 14mM since it is not given:
Then:
The I.C.E Table is expressed as follows:
CH₃COOH ⇄ CH₃COO⁻ + H⁺
Initial 0.0014 0 0
Change - x +x +x
Equilibrium (0.0014 - x) x x
Recall that:
Ka for acetic acid CH₃COOH = 1.8×10⁻⁵
∴
[tex]K_a = \dfrac{[x][x]]}{[0.0014-x]}[/tex]
[tex]1.8*10^{-5} = \dfrac{[x][x]]}{[0.0014-x]}[/tex]
[tex]1.8*10^{-5} = \dfrac{[x]^2}{[0.0014-x]}[/tex]
[tex]1.8*10^{-5}(0.0014-x) = x^2[/tex]
[tex]2.52*10^{-8} -1.8*10^{-5}x = x^2[/tex]
[tex]2.52*10^{-8} -1.8*10^{-5}x - x^2 =0[/tex]
By rearrangement:
[tex]- x^2 -1.8*10^{-5}x +2.52*10^{-8}= 0[/tex]
Multiplying through by (-) and solving the quadratic equation:
[tex]x^2 +1.8*10^{-5}x-2.52*10^{-8}= 0[/tex]
[tex](-0.00015 + x) (0.000168 + x) =0[/tex]
x = 0.00015 or x = -0.000168
We will only consider the positive value;
so x=[CH₃COO⁻] = [H⁺] = 0.00015
CH₃COOH = (0.0014 - 0.00015) = 0.00125
However, the percentage fraction of the dissociated acetic acid is:
[tex]= \dfrac{ 0.00015}{0.0014}\times 100[/tex]
= 10.71%