Respuesta :

Step-by-step explanation:

[tex]a_3 [/tex] = - 4

[tex]a_3 [/tex] = a* + (3- 1) d*

- 4 = a + 2d . . . . . . . . .(i)

[tex]a_8 [/tex] = - 29

[tex]a_8 [/tex] = a + ( 8 - 1) d

- 29 = a + 7d . . . . . . . . (ii)

subtracting equations (i) and (ii)

25 = 5d

d = -5

placing d = -5 in equation (i)

a - 10 = -4

a = 6

For an arithmetic Progtession

[tex]a_n [/tex] = a + (n - 1)d

[tex]a_n [/tex] = 6 + (n- 1)-5

[tex]a_n [/tex] = 6 - 5n + 5

[tex] \underline {a_n = 11 - 5n }[/tex]

[tex]\\[/tex]

*[tex] \boxed{ \mathfrak { a \:stands\: for\: first\: term } } [/tex]

*[tex] \boxed{ \mathfrak { d \:stands\: for\: common \: difference } } [/tex]

Answer:

General rule » -5n+11

Step-by-step explanation:

a3 = a+2d = -4 .......(1)

a8=a+7d = -29..........(2)

(2)-(1) » 5d= -25

d = -25/5

. = -5

substitute d = -5 in ( 1)

» a-2×-5= -4

a-10 = -4

a = -4 +10

= 6

General rule » a +(n-1)d

» 6 +(n-1)×-5

» 6-5n+5

» -5n+11