Answer:
[tex]\frac{16}{45}x-\frac{11}{12}[/tex]
Step-by-step explanation:
We are given that an expression
[tex]\frac{2}{5}(1/3x-15/8)-\frac{1}{3}(1/2-2/3x)[/tex]
We have to find the equivalent expression.
[tex]\frac{2}{5}(\frac{1}{3}x-\frac{15}{8})-\frac{1}{3}(\frac{1}{2}-\frac{2}{3}x)[/tex]
[tex]\frac{2}{5}\times \frac{1}{3}x-\frac{2}{5}\times \frac{15}{8}-\frac{1}{3}\times \frac{1}{2}-\frac{1}{3}\times (-\frac{2}{3}x)[/tex]
Using the the property
[tex]a\cdot (c-b)=a\cdot c-a\cdot b[/tex]
[tex]\frac{2}{5}(1/3x-15/8)-\frac{1}{3}(1/2-2/3x)[/tex]
[tex]=\frac{2}{15}x-\frac{3}{4}-\frac{1}{6}+\frac{2}{9}x[/tex]
[tex]=\frac{6x+10x}{45}+\frac{-9-2}{12}[/tex]
[tex]=\frac{16}{45}x-\frac{11}{12}[/tex]
[tex]\frac{2}{5}(1/3x-15/8)-\frac{1}{3}(1/2-2/3x)=\frac{16}{45}x-\frac{11}{12}[/tex]