Respuesta :

Answer:

a. The required proof is obtained from triangles OAB and ABC formed by joining AB and that we have;

A[tex]\hat O[/tex]B + 2∠C = 180°, 2·A[tex]\hat P[/tex]B + 2∠C = 180°

∴ A[tex]\hat O[/tex]B = 2·A[tex]\hat P[/tex]B

b. i) P[tex]\hat S[/tex]S = P[tex]\hat R[/tex]Q, given that angles subtended by the same arc or chord are equal, therefore, in ΔPQS, we have;

[tex]\left | PS \right |[/tex] = [tex]\left |PQ \right |[/tex]

ii) S[tex]\hat Q[/tex]P = 45°, [tex]S\hat R Z[/tex] =90°

Step-by-step explanation:

a. The given parameters are;

The center of the circle is point O

Points on the circumference of the circle = A, B, and P

Required to be proved, A[tex]\hat O[/tex]B = 2·A[tex]\hat P[/tex]B

Let ∠O represent A[tex]\hat O[/tex]B and let ∠P' represent A[tex]\hat P[/tex]B

We draw a line from the center O to the point P, and a line joining points A and B on the circumference of the circle

In ΔOAB, we have;

∠O + 2∠C = 180° (The sum of the interior angles of a triangle)

In ΔAPB, we have;

∠P' + ∠(C - a) + ∠(P' + C + a) = 180°

∴ 2·∠P' + 2·∠C = 180°

Therefore, by addition property of equality, we get;

∠O = 2·∠P'

Therefore;

A[tex]\hat O[/tex]B = 2·A[tex]\hat P[/tex]B

b. i) The given parameters are;

Points on the circle = P, Q, R, and S

P[tex]\hat Q[/tex]S = P[tex]\hat R[/tex]Q

According to circle theory, the angles which an arc or chord subtends in a given segment are equal, therefore;

P[tex]\hat S[/tex]S = P[tex]\hat R[/tex]Q

Therefore, P[tex]\hat S[/tex]S = P[tex]\hat Q[/tex]S by transitive property of equality

P[tex]\hat S[/tex]S and P[tex]\hat Q[/tex]S are base angles of ΔPQS, given that P[tex]\hat S[/tex]S = P[tex]\hat Q[/tex]S, we have;

ΔPQS is an isosceles triangle with base QS and therefore, the sides PS and PQ are the equal sides

Therefore, we have;

[tex]\left | PS \right |[/tex] = [tex]\left |PQ \right |[/tex]

ii) Given that SQ is the diameter of the circle, we have by circle theorem, the angle subtended on the circumference by the diameter = 90°

∴ [tex]S\hat PQ[/tex] = 90°

From (i), we have that P[tex]\hat S[/tex]S = P[tex]\hat Q[/tex]S, therefore, in triangle ΔPQS, we have;

[tex]S\hat PQ[/tex] + P[tex]\hat S[/tex]S + S[tex]\hat Q[/tex]P = 180°

Therefore;

90° + P[tex]\hat S[/tex]S + S[tex]\hat Q[/tex]P = 180°

P[tex]\hat S[/tex]S + S[tex]\hat Q[/tex]P = 180° - 90° = 90°

P[tex]\hat S[/tex]S = P[tex]\hat Q[/tex]S, therefore, P[tex]\hat S[/tex]S + S[tex]\hat Q[/tex]P = 2·S[tex]\hat Q[/tex]P

P[tex]\hat S[/tex]S + S[tex]\hat Q[/tex]P = 2·S[tex]\hat Q[/tex]P = 90°

S[tex]\hat Q[/tex]P = 90°/2 = 45°

S[tex]\hat Q[/tex]P = 45°

Similarly, given that SQ is the diameter, of the circle the angle [tex]S\hat R Q[/tex] formed by jointing S to Q is 90°

[tex]S\hat R Q[/tex] = 90°

[tex]S\hat R Q \ and \ S\hat R Z[/tex] are angles on a straight line and are therefore, supplementary, therefore;

[tex]S\hat R Z[/tex] = 180° - [tex]S\hat R Q[/tex]

[tex]S\hat R Z[/tex] = 180° - 90° = 90°

[tex]S\hat R Z[/tex] =90°.

Ver imagen oeerivona