Consider the function ƒ(x) = (x + 1)2 – 1. Which of the following functions stretches ƒ(x) vertically by a factor of 4?

A) ƒ(x) = 1∕4(x + 1)2 – 4
B) ƒ(x) = (1∕4x + 1)2 + 3
C) ƒ(x) = 4(x + 1)2 – 1
D) ƒ(x) = 4(4x + 1)2 – 1

Respuesta :

Answer:

C f(x) = 4(x+1)2-1

Step-by-step explanation:

factor of 4 = 2^2

(x+1)2-1 = 4(x+1) 2-1 = with x

           =   4(+1) 2-1  = without x

           =  (4 - 4) 2 = individual products of -1

           =  (8 - 8 ) = individual products of 2

           =   8 - 8  = 2^2 -2^2

           =  2^2 - 2^2

(x+1)2-1 = 4(x+1)2-1 = with x

            = 2x^2 -2^2

          -x = 2^2 -2^2

            x = -2^2-2^2

            x = 4

which proves f(x) is a factor of 4