Respuesta :
Answer:
It is false, because infinity is not a cardinality. The set N of positive integers is infinite and its cardinality is, if you wish, ℵ0 , the smallest infinite cardinal number, at least in an axiomatic set theory. A set S is infinite if and only if there exists a bijection between S and a proper subset of S , i.e. a subset of S different from S . Now the successor function s:N→N∗ is such a bijection; this follows from Peano’s axioms for arithmetic.