Respuesta :

Answer:

XY = 24

Step-by-step explanation:

In similar triangles, the corresponding sides are in same ratio.

[tex]\frac{AC}{XZ}=\frac{AB}{XY}\\\\\frac{x+6}{30}=\frac{16}{2x-4}[/tex]

Cross multiply,

(x + 6 )(2x-4) = 16*30

Use FOIL method

x*2x + x*(-4) + 6*2x + 6*(-4) = 480

2x² - 4x + 12x - 24 = 480  {Combine like terms}

2x² + 8x - 24 = 480

2x² + 8x - 24 - 480 = 0

2x² + 8x - 504 = 0

Divide the entire equation by 2

x² + 4x - 252 = 0

Sum = 4

Product = -252

Factors = 18 , -14   {18 +(-14) = 4  & 18*(-14) = -254 }

x² + 4x - 252 = 0

x² + 18x - 14x - 252 = 0  {Rewrite middle term}

x(x + 18) - 14(x + 18) = 0

(x + 18)(x - 14) = 0

x - 14 = 0           {Ignore x + 18 = 0 as measurement will not come in negative}

x = 14

XY  = 2x - 4

    = 2*14 -4

     = 28 - 4

       = 24