For a moving object, the force acting on the object varies directly with the object's acceleration. When a force of 8 N acts on a certain object, the acceleration of the object is 4 m/s?. If the acceleration of the object becomes 3 m/s?, what is the force?

Respuesta :

Here Mass is constant

  • F1=8N
  • a_1=4m/s^2
  • a_2=3m/s^2
  • F_2=?

Using Newtons s law

[tex]\\ \sf \longmapsto F=ma[/tex]

[tex]\\ \sf \longmapsto \dfrac{F}{a}=m[/tex]

[tex]\\ \sf \longmapsto \dfrac{F_1}{a_1}=\dfrac{F_2}{a_2}[/tex]

[tex]\\ \sf \longmapsto \dfrac{8}{4}=\dfrac{F_2}{3}[/tex]

[tex]\\ \sf \longmapsto F_2=\dfrac{24}{4}[/tex]

[tex]\\ \sf \longmapsto F_2=6N[/tex]

Answer:

F = 6N

Step-by-step explanation:

Equation

F = ka

F - force

k - constant of proportionality

a - acceleration

Step 1 - find k  

8N=k*4m/s^2

k=2

Step 2 - find F

F=2*3m/s^s

F=6