Respuesta :

Let the ratio be m:n

  • (x,y)=(4,5)
  • Points be (x1,y1)=(2,3)
  • (x2,y2)=(7,8)

We know

[tex]\boxed{\sf (x,y)=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)}[/tex]

[tex]\\ \sf\longmapsto (4,5)=\left(\dfrac{7m+2n}{m+n},\dfrac{8m+3n}{m+n}\right)[/tex]

Now

.[tex]\\ \sf\longmapsto \dfrac{7m+2n}{m+n}=4\dots(1)[/tex]

[tex]\\ \sf\longmapsto \dfrac{8m+3n}{m+n}=5\dots(2)[/tex]

Adding both

[tex]\\ \sf\longmapsto \dfrac{7m+2n+8m+3n}{m+n}=4+5[/tex]

[tex]\\ \sf\longmapsto \dfrac{7m+8m+2n+3n}{m+n}=9[/tex]

[tex]\\ \sf\longmapsto \dfrac{15m+5n}{m+n}=9[/tex]

[tex]\\ \sf\longmapsto 15m+5n=9(m+n)[/tex]

[tex]\\ \sf\longmapsto 15m+5n=9m+9n[/tex]

[tex]\\ \sf\longmapsto 15m-9m=9n-5n[/tex]

[tex]\\ \sf\longmapsto 6m=4n[/tex]

[tex]\\ \sf\longmapsto \dfrac{m}{n}=\dfrac{6}{4}[/tex]

[tex]\\ \sf\longmapsto \dfrac{m}{n}=\dfrac{3}{2}[/tex]

[tex]\\ \sf\longmapsto m:n=3:2[/tex]

Option B is correct