Respuesta :

Answer:

[tex]x = 34^\circ[/tex]

Step-by-step explanation:

Note that ∠TSU and ∠PSR are vertical angles. Hence:

[tex]m\angle TSU = m\angle PSR[/tex]

∠PSR is the sum of ∠PSQ and ∠QSR. Hence:

[tex]\displaystyle m\angle TSU = m\angle PSQ + m\angle QSR[/tex]

We know that ∠TSU measures 4x and ∠QSR measures 3x. Thus:

[tex](4x) = m\angle PSQ + (3x)[/tex]

Solve for ∠PSQ:

[tex]m\angle PSQ = x[/tex]

Next, ∠PQS and ∠RQS form a linear pair. Thus:

[tex]m\angle PQS + m\angle RQS = 180^\circ[/tex]

∠RQS measures 68°. Thus:

[tex]m\angle PQS +(68^\circ) = 180^\circ[/tex]

Solve for ∠PQS:

[tex]m\angle PQS = 112^\circ[/tex]

The interior angles of a triangle must total 180°. So, for ΔPQS:

[tex]\displaystyle m\angle SPQ + m\angle PQS + m\angle PSQ = 180^\circ[/tex]

Substitute in the known values:

[tex](x) + (112^\circ) + (x) = 180^\circ[/tex]

Simplify:

[tex]2x = 68^\circ[/tex]

And divide. Hence:

[tex]x = 34^\circ[/tex]